www.毛片在线观看_怡红院亚洲红怡院天堂麻豆_欧美jizz18欧美_国产精品免费久久久久影院

    預存
    Document
    當前位置:文庫百科 ? 文章詳情
    讓離子飛——飛行時間二次離子質譜在鋰基二次電池中的應用
    來源:測試GO 時間:2022-04-17 21:22:04 瀏覽:6223次


    進入21世紀以來,“碳排放”成為了人類社會生存和發展的核心問題,能源領域的研究逐漸在自然科學研究領域占據了重要的一席之地。相信在不久的將來,“儲能”一詞更是會成為這個時代的主要篇章。

    近年來,電池儲能領域,尤其是二次電池的研究發展離不開測試技術的有力輔助。而且,深入理解電化學界面反應機理,更是對測試技術提出了極高的要求。在這里,筆者將帶領各位儲能領域的研究同仁,借助近十年已有的飛行時間二次離子質譜在鋰基二次電池中的研究成果,深入了解這項測試技術的原理、進展及其在電化學儲能系統中的應用,希望能夠對大家有所啟發。

    01
    飛行時間二次離子質譜(SIMS)技術

    1)測試原理

    SIMS技術是使用脈沖初級離子束(Bin+、Au+、C60+等)撞擊樣品表面,在樣品表面的前幾個單層中激發出次級離子、電離原子和分子,然后濺射進入質譜儀中進行分析。根據電離技術可分為“靜態”和“動態”SIMS,用于獲取樣品表面某位置的分子信息(靜態),也可以提供樣品表面的二維或三維成分分布數據(動態)。


     

    1 SIMS分析原理

    2)儀器類型

    各個SIMS儀器在初級離子源、離子束撞擊樣品的電壓、移除的樣品量以及用于檢測的離子分離方面略有不同。最常見的儀器類型是飛行時間二次離子質譜儀(ToF-SIMS)和納米二次離子質譜儀(Nano SIMS)。

    ToF-SIMS是典型的“靜態”SIMS儀器代表。ToF-SIMS使用飛行時間作為檢測模式,由初級離子源濺射產生的次級離子加速通過飛行室并根據離子到達時間進行分離。為了獲取較高的空間分辨率通常需要提供更高濃度的樣品。

    Nano SIMS只能在“動態”模式下運行。Nano SIMS通常使用Cs+源增強負二次離子的電離以及O-/O2-源增強正二次離子的電離,測試離子被偏轉到六個可移動的檢測器和一個固定的檢測器上,每次分析期間可以檢測到七種物質。Nano SIMS只能生成原子尺度的次級離子,一次最多測定七個物種,且無法同時分析正負二次離子,僅能提供小分子碎片分布的信息。

    3SIMS-電化學聯用

    由于Nano SIMS技術的限制較多,因此在能源電化學領域,ToF-SIMS技術的應用更為廣泛一些。理解電極/電解液界面過程(如電荷傳輸、界面膜生長等)對于增強儲能器件性能至關重要,ToF-SIMS技術能夠將電極表面的化學信息和空間信息直接關聯,為研究電極表面過程提供了更多的可能性。ToF-SIMS技術與電化學的聯用是打破測試條件限制的重要突破之舉,對能源電化學研究具有重要意義。

    筆者小結:SIMS技術具有超高靈敏度及超高時空分辨率的優勢。SIMS技術主要有ToF-SIMS技術和Nano SIMS技術兩種,其中ToF-SIMS技術能夠將電極表面的化學信息和空間信息直接關聯,在儲能電化學領域具有更廣泛的應用。


    02
    SIMS技術在鋰離子電池中的應用

    1)溶劑化結構

    鋰離子電池溶劑化結構不僅影響本體電解液中Li+的傳輸,而且也會對界面固體電解質膜(SEI或CEI)的化學組成、結構、鋰離子脫溶劑化動力學產生顯著影響。研究者們廣泛認為,Li+能夠和溶劑分子配位。但配位數的多少、陰離子與溶劑和Li+如何相互作用仍待明確,這導致溶劑化結構理論存在爭議的本質問題是缺乏直接的分子證據。

    2018年,研究者利用ToF-SIMS法,獲得了電解液溶劑化結構的直接信息,為Li+溶劑化作用的基礎研究提供了新的視角。Zhang等人利用圖2(a)所示的裝置成功分析了典型鋰離子電池電解液LiPF6/EC-DMC的溶劑化結構,結果如圖2(b)所示。正離子模式質譜圖顯示,含EC物種的信號強度比含DMC物種的信號強度高2個數量級以上,這證明EC相對于DMC優先與Li+發生配位。同時,這也解釋了電解液在石墨表面還原形成的SEI產物來自于EC而不是DMC。

    2 SIMS測試裝置示意圖(a)和正離子(b)負離子(c)模式質譜圖

    在負離子質譜圖(圖2(c))中,能夠清楚觀察到EC的溶劑化陰離子的峰也強于DMC的溶劑化陰離子的峰,表明陰離子同樣優先與EC發生溶劑化作用。這一結果進一步佐證了石墨表面還原SEI結構的成分來源,同時也提醒了研究者們陰離子-溶劑相互作用也會對SEI的組成結構起到關鍵作用。

    2SEI形成過程

    電解液溶劑化結構在SEI形成過程中扮演了關鍵角色,2020年,Zhou等人使用原位電化學ToF-SIMS聯用技術提供了電極/電解液界面復雜過程的準確動態分子信息。結果顯示,在開路狀態時,電極界面正負電荷均勻分布,陰離子(FSI-)和陽離子(Li+,Li-DME+)在Cu電極表面;充電至1.0 V時由于電場力作用,溶劑化Li+吸附在Cu電極表面,FSI-濃度降低;充電至2.0 V時靠近Cu電極表面處的電極/電解液界面形成SEI,其中Li+信號先于[Li-DME]+、OCH3-、FSI-信號之前,這證明形成了含鋰的SEI;放電后信號與充電至2.0 V時相同,表明內部SEI層沒有溶解,而OCH3-信號變得很強,證明除了內部SEI層外還形成了有機富集層(外部SEI層)。

    3 原位ToF-SIMS分析SEI形成過程

    上述研究證明,負電荷電極不利于陰離子還原,SEI化學組成實際上由溶劑分子主導。該技術實現了電極/電解液界面化學的原位觀察,將有助于設計更好的鋰離子電池界面化學。

    3SEI生長過程

    SEI的動態生長問題依舊是電極/電解液界面的一項重要研究問題。在表面形貌的研究上,盡管AFM或電鏡技術能夠提供SEI形貌演變的相關信息,但其結構演變和生長過程依舊缺乏相關的實驗證據。

    Liu等使用同位素輔助ToF-SIMS技術揭示了連續時間尺度上的SEI生長動力學。在Cu電極表面發生電解液還原生成SEI之后,6Li+優先參與SEI形成,7Li負極提供Li+并補充到電解液中,SEI生長的時間尺度可用6Li:7Li表示。結果表明,SEI的生長在空間上遵循“自下而上”的生長順序,即新產生的SEI在SEI/電極界面處形成,并隨著SEI變厚而推動現有的SEI層生長。這項工作從動力學角度為SEI形成機制提供了直接證據,有利于為電解液添加劑設計等提供理論指導。

    4)離子傳輸

    Li+在SEI中的傳輸一定程度上決定了鋰離子電池的性能,尤其是倍率性能。2011年,Lu等人采用同位素輔助ToF-SIMS技術對該問題進行了研究。從實驗結果分析,在電極SEI多孔外層,電解液中的陰離子和陽離子能夠共同遷移;在無機內層,致密的無機物(如Li2O和Li2CO3)則會限制電解質的傳輸,只有Li+才能通過離子交換或空位間隙在SEI層中進行傳輸。

    5)全固態電池

    上文中討論了有機電解液基鋰離子電池中的一些反應機制,同樣地,SIMS技術在全固態電池中仍就能發揮重要的作用。全固態鋰離子電池正極一般采用固態電解質和活性材料組成的復合正極,大量粒子在其中隨機分布并形成路徑復雜的電子和離子的三維通路。因此,原位探測電極內部反應的均一性,從而優化復合電極結構顯得尤為重要,而且理解電化學界面衰退機制對于改善全固態鋰離子電池至關重要。

    2021年,Yamagishi等人利用原位ToF-SIMS技術研究了全固態鋰離子電池中鋰離子的分布及電化學界面的衰退過程。在電池的固固接觸界面發生界面接觸損失及發生副反應時,能夠直接觀察到6Li+、Li2O+、PO2-和PO3-碎片的強度和分布。電池充電后,NCA顆粒上Li2O+碎片的強度明顯下降,且再次放電后不可逆。

    這些實驗現象表明,由于電子和離子通路局部短缺,非活性NCA粒子較多,Li+難以重新返回NCA粒子中。PO2-和PO3-碎片主要集中在NCA/LPS界面并隨循環增加,表明NCA和LPS之間發生了化學/電化學反應產生SEI且不斷變厚,因此導致整個電池的性能衰退。

    4 原位ToF-SIMS測量鋰離子全固態電池


    03
    SIMS技術在鋰硫電池中的應用

    鋰硫電池具有超高的理論容量而被認為是下一代二次電池的最有前景的器件之一,金屬鋰負極的高活性導致金屬鋰/電解液界面會發生極為復雜的化學/電化學反應,理解金屬鋰/電解液界面過程對于提高金屬鋰負極循環壽命至關重要。

     

    5 SIMS技術在鋰硫電池中的應用

    2020年,Nanda等使用ToF-SIMS技術來定量電池循環過程中沉積金屬鋰的損失。經過長期循環后,沉積鋰中的Li2O量增加,還原硫物種(Li2S/Li2S2)逐漸積累,含氫的界面成分則逐漸耗盡,表明有氣體(H2、CH4、C2H4、C2H6和H2S)分解產生。

    隨著循環圈數增加,鋰沉積積累了大量的副反應產物。SEI層隨著循環圈數增加而不斷增厚,限制了離子和電子的傳輸,導致“死”鋰的產生。此外,多硫物種穿梭到鋰負極表面和大量氣體的產生也是進一步限制金屬鋰可逆沉積的可能原因。該工作定量評估了金屬鋰在長期循環過程中的變化,對于改善鋰硫電池循環壽命具有指導意義。


    04
    SIMS技術在鋰氧電池中的應用

    非水溶劑鋰氧電池在實際應用中面臨循環壽命低、倍率能力差、過電勢高等問題。2019年Wang等選擇了碳電極和負載催化劑Ru的碳電極作為模型電極以揭示放電過程的氧反應界面。以二次離子18O-為指示劑,利用ToF-SIMS獲得放電產物的三維化學信息,結果如圖6所示。

    隨著濺射深度增加,18O-的信號強度逐漸降低,當濺射至距電極表面175 nm時,兩個電極的18O-信號幾乎消失。這表明Li2O2層位于放電產物的表層,無論有無催化劑的鋰氧電池的充放電反應界面均位于Li2O2/電解液界面。該研究開發的同位素標記的ToF-SIMS共性技術可普遍應用于揭示其他金屬-氧氣(Na/K-O2)電池的反應機制。

     

    6 ToF-SIMS深度掃描二次離子的三維圖像

    05
    總結和展望

    ToF-SIMS技術儼然已經成為一種研究界面電化學反應的有力工具,在能源電化學的基礎研究中發揮了舉重若輕的作用。ToF-SIMS具有低檢測限和分辨率高等優點,能夠全方位收集電極表面分子/原子信息。微流控技術將電化學和ToF-SIMS技術耦合到一起,能夠實現電化學不穩定反應中間體的檢測以及電極/電解液界面過程的可視化觀測。

    然而,原位電化學ToF-SIMS聯用技術的應用在涉及氣體的電化學反應中仍然受限。而且,原位電化學ToF-SIMS的使用僅限于少數實驗室,該技術需要進一步的創新以實現全面推廣。

    參考文獻:趙志偉, 楊智, 彭章泉. 飛行時間二次離子質譜在鋰基二次電池中的應用[J].儲能科學與技術, 2022, 11(03): 781-794. DOI: 10.19799/j.cnki.2095-4239.2021.0672.


    評論 / 文明上網理性發言
    12條評論
    全部評論 / 我的評論
    最熱 /  最新
    全部 3小時前 四川
    文字是人類用符號記錄表達信息以傳之久遠的方式和工具。現代文字大多是記錄語言的工具。人類往往先有口頭的語言后產生書面文字,很多小語種,有語言但沒有文字。文字的不同體現了國家和民族的書面表達的方式和思維不同。文字使人類進入有歷史記錄的文明社會。
    點贊12
    回復
    全部
    查看更多評論
    相關文章

    Scientific Reports:年發文破2W,不是預警期刊啦,快來看看!

    2022-07-04

    催化二區好刊推薦丨發文量大、速度快、對國人友好!

    2021-07-01

    ACS Applied Materials & Interfaces:雖貴為1區期刊,但發文量大,對國人友好,值得試試!

    2021-07-01

    待遇豐厚丨日本東北大學李昊課題組誠招特聘助理教授/博士后(材料計算或機器學習方向)

    2022-07-04

    突發!復旦大學院長被教師持刀捅死,真的是“內卷”“非升即走”的錯?

    2021-06-19

    重大變化!論文不再標注第一作者&通訊作者

    2022-05-15

    熱門文章/popular

    基礎理論丨一文了解XPS(概念、定性定量分析、分析方法、譜線結構)

    手把手教你用ChemDraw 畫化學結構式:基礎篇

    晶體結構可視化軟件 VESTA使用教程(下篇)

    【科研干貨】電化學表征:循環伏安法詳解(上)

    電化學實驗基礎之電化學工作站篇 (二)三電極和兩電極體系的搭建 和測試

    【科研干貨】電化學表征:循環伏安法詳解(下)

    微信掃碼分享文章
    www.毛片在线观看_怡红院亚洲红怡院天堂麻豆_欧美jizz18欧美_国产精品免费久久久久影院

                一级日本不卡的影视| 制服丝袜亚洲播放| 精品久久一区二区| 亚洲少妇最新在线视频| 九色综合狠狠综合久久| 国产欧美综合在线观看第十页| 午夜av一区二区| 国产视频一区不卡| 日本美女视频一区二区| xfplay精品久久| 色悠悠久久综合| 国产欧美精品区一区二区三区 | 一区二区三区在线视频免费 | 亚洲成人免费视频| 成人av集中营| 亚洲夂夂婷婷色拍ww47| 精品国精品自拍自在线| 天天综合色天天综合色h| 99r国产精品| 色狠狠色噜噜噜综合网| 国产精品乱人伦中文| 国产又粗又猛又爽又黄91精品| 中文字幕一区二区三| 欧美一区二区免费视频| 亚洲成年人网站在线观看| 91视频国产观看| 欧美午夜精品久久久| 自拍偷在线精品自拍偷无码专区| 国产精品1区2区3区在线观看| 亚洲欧美日韩久久| 26uuu欧美日本| 免费高清在线视频一区·| 中文字幕亚洲区| 精品毛片乱码1区2区3区| 日韩不卡免费视频| 国产精品色哟哟| 日韩欧美综合一区| 日本美女一区二区| 最新不卡av在线| 亚洲精品一区二区三区99| 麻豆成人综合网| 一区二区三区加勒比av| 欧美激情资源网| 成人午夜电影久久影院| 色系网站成人免费| 亚洲精品乱码久久久久久久久 | 久久美女高清视频| 久久精品国产亚洲a| 亚洲精品国产一区二区精华液 | 亚洲精品乱码久久久久久| 国产欧美一区在线| 丰满少妇久久久久久久| 色视频欧美一区二区三区| 亚洲视频综合在线| 久久人人爽人人爽| 日韩一区二区高清| 久久99国产精品免费网站| 亚洲一区二区欧美日韩| 国产精品久久久久久亚洲伦| 99久久婷婷国产综合精品| 欧美日韩不卡视频| 日韩电影免费在线看| 亚洲欧美色图小说| 国产精品国产三级国产aⅴ原创| 99精品1区2区| 欧美一级久久久久久久大片| 美国精品在线观看| 午夜精品福利视频网站| 一级女性全黄久久生活片免费| 欧美韩日一区二区三区四区| 精品国产91洋老外米糕| 国产91色综合久久免费分享| 欧美日韩视频第一区| 免费成人在线观看视频| 亚洲www啪成人一区二区麻豆| 《视频一区视频二区| 国产三级欧美三级日产三级99| 精品国产免费一区二区三区香蕉| 国产高清一区日本| 欧美日韩一区小说| 激情图片小说一区| 91精彩视频在线观看| 婷婷久久综合九色综合伊人色| 亚洲摸摸操操av| 一区二区三区小说| 亚洲视频一二三区| 亚洲欧美电影院| 中文字幕一区二区三区视频| 国产精品国产a| 亚洲国产高清在线| 国产精品久久久久国产精品日日| 久久久不卡影院| 国产欧美日韩在线| 国产欧美一区二区精品性| 国产欧美精品一区| 国产精品免费看片| 日韩理论在线观看| 18欧美亚洲精品| 亚洲一区二区三区爽爽爽爽爽| 亚洲黄色av一区| 亚洲成人在线免费| 亚洲v精品v日韩v欧美v专区| 日韩成人av影视| 欧美性高清videossexo| 国产一区二区精品久久99| 91麻豆精品国产91久久久久| 国产成人免费av在线| 日韩欧美国产一区二区三区 | 欧美三级中文字幕| 国产一区二区三区在线观看精品| 欧美精品免费视频| 成人福利视频在线| 久久亚洲一区二区三区明星换脸| 91免费版pro下载短视频| 日本一区二区三区四区 | 欧美日韩高清影院| 成人一区二区三区中文字幕| 2014亚洲片线观看视频免费| 久久久久国产精品麻豆ai换脸 | 国产精品久久久久久一区二区三区| 国产精品嫩草影院com| 亚洲综合男人的天堂| 色琪琪一区二区三区亚洲区| 国产乱码精品一区二区三| 日韩精品一区二区三区swag | 一区二区三区在线免费播放| 亚洲国产欧美另类丝袜| 久久www免费人成看片高清| 制服丝袜av成人在线看| av亚洲精华国产精华精华| 国产精品久久久久国产精品日日| 日韩理论片网站| 日韩成人一级大片| 欧美一区二区三区爱爱| 久久你懂得1024| 亚洲综合精品自拍| 欧美影院一区二区三区| 成人av先锋影音| 中文字幕在线一区免费| 亚洲a一区二区| 国产乱码字幕精品高清av| 国产午夜亚洲精品午夜鲁丝片 | 一区二区在线看| 欧美在线不卡视频| 91久色porny| 亚洲午夜精品在线| 欧美日本一区二区在线观看| 91麻豆免费在线观看| 一区二区三区在线视频免费| 欧美亚洲国产一卡| 91在线观看高清| 亚洲综合免费观看高清完整版在线| 在线欧美日韩精品| 99久久久精品免费观看国产蜜| 日韩一区中文字幕| 欧美影院精品一区| 91视视频在线观看入口直接观看www| 亚洲欧美日韩在线不卡| 欧美亚洲自拍偷拍| 久久一二三国产| 亚洲超碰97人人做人人爱| 51久久夜色精品国产麻豆| 国产精品欧美经典| 毛片av一区二区| 久久久亚洲高清| 一区av在线播放| 国产v综合v亚洲欧| 亚洲人成7777| 欧美精品精品一区| ●精品国产综合乱码久久久久| 久热成人在线视频| 欧美国产亚洲另类动漫| 色综合久久久久综合体桃花网| 99国产精品国产精品久久| 亚洲午夜久久久久久久久久久| 欧美一级理论片| 亚洲精品免费播放| 成人av在线播放网站| 亚洲国产精品久久艾草纯爱| 日韩亚洲欧美成人一区| 亚洲免费观看高清完整版在线观看 | 奇米777欧美一区二区| 日韩午夜中文字幕| 亚洲乱码国产乱码精品精的特点| 国产一区二区电影| 亚洲日本在线视频观看| 欧美精品久久99| 一区二区三区中文在线观看| 国产高清在线精品| 亚洲国产精品久久人人爱蜜臀 | 亚洲一区二区五区| 日韩精品一区二区三区视频播放| 亚洲黄一区二区三区| av不卡免费在线观看| 天堂成人国产精品一区| 久久精品欧美一区二区三区麻豆| 色爱区综合激月婷婷| 国产精品日韩成人| 国产99精品视频| 亚洲va欧美va人人爽午夜|
                +

                你好,很高興為您服務!

                發送